Refinement	
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.001$
R = 0.031	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.038	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.06	Extinction correction: none
1219 reflections	Atomic scattering factors
190 parameters	from SHELXTL-Plus
$w = 1/[\sigma^2(F) + 0.0030 F ^2]$	(Sheldrick, 1991)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
Br	0.5686(1)	0.0535(1)	0.61914 (4)	0.0649 (2)
O(1)	0.8543 (5)	-0.0620(3)	0.7315 (3)	0.080 (2)
O(2)	1.4351 (5)	-0.1572 (3)	0.8333 (3)	0.092 (2)
O(3)	1.5903 (6)	-0.0533 (3)	0.9205 (4)	0.111 (2)
O(4)	1.5623 (4)	0.1473 (2)	0.8791 (2)	0.052(1)
N(1)	1.4684 (6)	-0.0692(3)	0.8641 (3)	0.057 (2)
C(1)	0.7723 (6)	0.1143 (4)	0.6856 (3)	0.051 (2)
C(2)	0.8944 (7)	0.0309 (4)	0.7294 (3)	0.047 (2)
C(3)	1.0660 (6)	0.0679 (3)	0.7694 (3)	0.040 (2)
C(4)	1.1147 (6)	0.1738 (4)	0.7791 (3)	0.045 (2)
C(5)	1.2775 (6)	0.2019 (4)	0.8164 (3)	0.045 (2)
C(6)	1.3989 (6)	0.1252 (4)	0.8454 (3)	0.043 (2)
C(7)	1.3503 (6)	0.0174 (3)	0.8357 (3)	0.042 (2)
C(8)	1.1876 (6)	-0.0096 (4)	0.7985 (3)	0.046 (2)
C(9)	1.6056 (6)	0.2548 (3)	0.9049 (3)	0.051 (2)
C(10)	1.7903 (6)	0.2565 (4)	0.9471 (3)	0.046 (2)
C(11)	1.8861 (6)	0.3481 (4)	0.9442 (3)	0.054 (2)
C(12)	2.0522 (7)	0.3522 (5)	0.9863 (4)	0.063 (2)
C(13)	2.1257 (7)	0.2650 (5)	1.0325 (4)	0.065 (2)
C(14)	2.0314 (6)	0.1726 (5)	1.0348 (4)	0.061 (2)
C(15)	1.8655 (6)	0.1675 (4)	0.9925 (3)	0.053 (2)

Table 2. Selected geometric parameters (Å, °)

Br-C(1)	1.926 (5)	O(1)C(2)	1.214 (6)
O(2) - N(1)	1.211 (6)	O(3)N(1)	1.197 (6)
O(4)-C(6)	1.350 (5)	O(4)—C(9)	1.435 (5)
N(1)—C(7)	1.461 (6)	C(1) - C(2)	1.511 (7)
C(2)-C(3)	1.481 (7)	C(3)-C(4)	1.391 (6)
C(3)-C(8)	1.397 (7)	C(4)—C(5)	1.377 (6)
C(5)-C(6)	1.389 (6)	C(6)—C(7)	1.413 (6)
C(7)—C(8)	1.372 (7)	C(9)C(10)	1.509 (7)
C(10)-C(11)	1.382 (7)	C(10)-C(15)	1.393 (7)
C(11)-C(12)	1.377 (7)	C(12)—C(13)	1.375 (8)
C(13)-C(14)	1.383 (8)	C(14)—C(15)	1.377 (7)
BrC(1)C(2)	112.5 (3)	C(6)O(4)C(9)	118.4 (3)
O(2)-N(1)-O(3)	121.4 (5)	O(3)—N(1)—C(7)	119.9 (4)
O(2) - N(1) - C(7)	118.6 (4)	O(1) - C(2) - C(1)	121.7 (5)
C(1)-C(2)-C(3)	116.7 (4)	O(1) - C(2) - C(3)	121.5 (4)
C(2)-C(3)-C(8)	117.3 (4)	C(2) - C(3) - C(4)	124.7 (4)
C(4)-C(3)-C(8)	118.0 (4)	C(3)-C(4)-C(5)	121.3 (4)
C(4)C(5)C(6)	120.9 (4)	O(4)C(6)C(5)	123.9 (4)
C(5)-C(6)-C(7)	118.0 (4)	O(4)C(6)C(7)	118.0 (4)
N(1)—C(7)—C(6)	122.2 (4)	C(6)C(7)C(8)	120.5 (4)
N(1)-C(7)C(8)	117.3 (4)	C(3)—C(8)—C(7)	121.3 (4)
O(4)-C(9)-C(10)	107.8 (4)	C(9)-C(10)-C(15)	120.9 (4)
C(9)-C(10)-C(11)	120.3 (4)	C(11)C(10)-C(15)	118.8 (5)
C(10) - C(11) - C(12)	120.9 (5)	C(11)—C(12)—C(13)	120.4 (5)
C(12)-C(13)-C(14)	119.1 (15)	C(13)-C(14)-C(15)	120.8 (5)
C(10)-C(15)-C(14)	119.9 (5)		

The $\Delta \rho$ map showed the positions of all H atoms. H atoms were placed in idealized positions and included in the least-squares refinement with fixed isotropic temperature factors. Structure solution and refinement were performed with *SHELXTL-Plus* (Sheldrick, 1991). Geometrical parameters were calculated using the program *PARST* (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters and Hatom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71610 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: LI1062]

References

- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331–2339.
- Ida, M. (1976). Arzneim. Forsch. Drug Res. 26, 1337-1340.
- Murase, K., Mase, T., Ida, H., Takahashi, K. & Murakami, M. (1977). Chem. Pharm. Bull. 25, 1368–1377.
- Nardelli, M. (1983). Comput. Chem. 95-98.
- Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.

Trofast, J., Osterberg, K., Kallstrom, B. L. & Waldeck, B. (1991). Chirality, 3, 443–450.

Acta Cryst. (1994). C50, 629-631

2-Methyl-2-(4-nitrophenylazo)-1,3-indandione, C₁₆H₁₁N₃O₄

Süheyla Özbey and Engin Kendi

Department of Physics Engineering, Faculty of Engineering, Hacettepe University, 06532 Beytepe, Ankara, Turkey

NERMIN HOCAOGLU AND TAHSIN UYAR

Chemistry Department, Art and Science Faculty, Gazi University, 06503 Ankara, Turkey

THOMAS C. W. MAK

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

GIOVANNI LUCA CASCARANO

Inst. di Ricerca per lo Sviluppo di Metod Crist, 70124 Bari Campus Univ., Bari, Italy

(Received 6 April 1993; accepted 16 September 1993)

Abstract

The 2-methyl-1,3-indandione and 4-nitrophenyl groups are *trans* to each other. The five-membered ring of the indandione moiety adopts an envelope

conformation. The phenyl and azo groups are not coplanar because of steric hindrance between the lone-pair orbitals at the carbonyl O and β -N atoms $[C1' - N = 112.6 (6) \text{ and } 112.8 (6)^{\circ} \text{ for molecules}$ A and B, respectively].

Comment

The structure determination of the title compound (I) was undertaken in order to establish the configuration at the azo group.

The 2-methyl-1,3-indandione and the 4-nitrophenyl groups are trans, as expected. Each fivemembered ring of the two independent molecules in the asymmetric unit has an envelope conformation with C2 as the out-of-plane atom. For the molecules A and B the angles between the least-squares plane through atoms C3, C4, C9 and C1, and the plane of C3, C2 and C1 are 9.2 (5) and $11.3 (5)^\circ$, respectively.

In the phenylazo groups of the two independent molecules, the benzene ring plane and the azo group deviate slightly from coplanarity [N2-N1-C1' -C6' = 4.4 (7) and -171.8 (7)° for molecules A and B, respectively, and N2-N1-C1'-C2' = 174.0 (7) and 11.1 (7)° for molecules A and B, respectively]. The NO₂ plane is slightly twisted out of the plane of the phenyl ring [by 3.5(5) and $6.3(5)^{\circ}$ for molecules A and B, respectively] in order to minimize the steric hindrance between the O atoms and both H3' and H5', but still allowing some π conjugation with the phenyl ring. The close O4…H3' and O3…H5' contacts of 2.47 (1) and 2.41 (1) Å, respectively, for molecule A [2.40(1)] and 2.44(1)Å, respectively, for molecule B are a result of this compromise.

Fig. 1. A view of the molecule showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels.

Experimental

Crystal	d	ata
---------	---	-----

C_{16}	Η	11N3O4
Mr	=	309.28

Mo $K\alpha$ radiation

 $\lambda = 0.7107 \text{ Å}$

Orthorhombic P212121 a = 6.890 (2) Å b = 15.798 (4) Å c = 27.201 (7) Å $V = 2961 (1) \text{ Å}^3$ Z = 8 $D_{\rm x} = 1.387 {\rm Mg} {\rm m}^{-3}$

Data collection

Nicolet R3m/V diffractometer ω -2 θ scans Absorption correction: empirical $T_{\min} = 0.914, T_{\max} =$ 0.924 1205 measured reflections 1205 independent reflections

Refinement

014 O2A

03A

04A

N1A N2A

N3A

C4'AC3'A

C2'ACl'AC6'A C5'A C10A C2A C3A C4A C9AClA C8A

C7A

C6A C5A

O1BO2*B* 03B

O4B N1B N2B

N3B

C4' B

 $w = 0.8515/[\sigma^2(F)]$ Refinement on FR = 0.043 $+ 0.00054F^{2}$ wR = 0.039 $(\Delta/\sigma)_{\rm max} = 0.05$ $\Delta \rho_{\rm max}$ = 0.145 e Å⁻³ S = 1.5 $\Delta \rho_{\rm min} = -0.142 \ {\rm e} \ {\rm \AA}^{-3}$ 967 reflections Atomic scattering factors 420 parameters Only coordinates of H atoms from International Tables for X-ray Crystallography refined (1974, Vol. IV)

Cell parameters from 15

reflections

 $\mu = 0.096 \text{ mm}^{-1}$

 $0.3 \times 0.3 \times 0.2$ mm

1088 observed reflections

 $[F > 4\sigma(F)]$ $\theta_{\rm max} = 22.5^{\circ}$

2 standard reflections

reflections

monitored every 125

intensity variation: 1%

 $h = 0 \rightarrow 7$

 $k = 0 \rightarrow 16$

 $l = 0 \rightarrow 28$

 $\theta = 6-20^{\circ}$

T = 293 K

Plate

Yellow

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{eq}
0.5278 (11)	0.0648 (4)	0.2419 (2)	0.077 (3)
1.1226 (11)	0.1742 (4)	0.2999 (2)	0.081 (3)
0.9985 (13)	-0.2500(5)	0.4910 (3)	0.106 (3)
0.9593 (10)	-0.1610 (4)	0.5500 (2)	0.107 (3)
0.7908 (10)	0.0777 (4)	0.3687 (2)	0.047 (3)
0.8097 (10)	0.0572 (4)	0.3247 (2)	0.056 (3)
0.9568 (13)	-0.1786 (6)	0.5070 (3)	0.076 (4)
0.9088 (12)	-0.1135 (6)	0.4707 (3)	0.057 (4)
0.8690 (12)	-0.0313 (6)	0.4864 (3)	0.051 (4)
0.8280 (11)	0.0289 (5)	0.4517 (3)	0.052 (4)
0.8285 (12)	0.0077 (5)	0.4022 (3)	0.045 (3)
0.8673 (12)	-0.0745 (6)	0.3866 (3)	0.048 (4)
0.9044 (11)	-0.1352 (5)	0.4205 (3)	0.050 (4)
0.6762 (15)	0.2072 (5)	0.3119 (3)	0.076 (4)
0.7851 (16)	0.1293 (5)	0.2900 (3)	0.057 (4)
0.6832 (16)	0.0957 (6)	0.2438 (3)	0.058 (4)
0.8165 (16)	0.1145 (5)	0.2026 (3)	0.051 (4)
0.9938 (17)	0.1477 (6)	0.2188 (3)	0.061 (4)
0.9912 (17)	0.1537 (6)	0.2736 (4)	0.065 (5)
1.1489 (16)	0.1647 (6)	0.1870 (4)	0.079 (5)
1.1147 (18)	0.1495 (7)	0.1378 (5)	0.093 (5)
0.9386 (18)	0.1186 (7)	0.1208 (4)	0.082 (5)
0.7906 (17)	0.0991 (5)	0.1524 (4)	0.072 (5)
0.6755 (10)	0.1608 (4)	0.5480 (3)	0.097 (3)
0.0879 (10)	0.0383 (5)	0.6014 (2)	0.086 (3)
0.4008 (12)	-0.1302 (5)	0.2798 (3)	0.145 (4)
0.4615 (14)	-0.2255 (5)	0.3299 (2)	0.120 (4)
0.3103 (10)	0.0757 (4)	0.4760 (3)	0.064 (3)
0.3540 (11)	0.0503 (4)	0.5171 (3)	0.069 (3)
0.4122 (13)	-0.1549 (5)	0.3205 (3)	0.077 (4)
0.3821 (12)	0.0963 (6)	0.3618 (3)	0.048 (3)

С3′В	0.4001 (12)	-0.1273 (5)	0.4095 (3)	0.049 (4)
C2' B	0.3740 (12)	-0.0729 (6)	0.4481 (3)	0.054 (4)
C1' <i>B</i>	0.3371 (11)	0.0123 (5)	0.4384 (3)	0.045 (3)
C6' B	0.3143 (12)	0.0417 (6)	0.3904 (3)	0.058 (4)
C5' B	0.3404 (13)	-0.0133(5)	0.3517 (3)	0.056 (4)
C10B	0.2256 (15)	0.1960 (5)	0.5422 (4)	0.080 (5)
C2 <i>B</i>	0.3339 (16)	0.1159 (5)	0.5562 (3)	0.057 (4)
C3 <i>B</i>	0.5383 (17)	0.1362 (6)	0.5730 (4)	0.063 (4)
C4 <i>B</i>	0.5502 (16)	0.1235 (6)	0.6278 (4)	0.057 (4)
C9B	0.3807 (16)	0.0851 (5)	0.6427 (3)	0.049 (4)
C1 <i>B</i>	0.2466 (16)	0.0735 (7)	0.6008 (4)	0.064 (4)
C8 <i>B</i>	0.3442 (15)	0.0629 (6)	0.6922 (3)	0.067 (4)
C7 <i>B</i>	0.4990 (18)	0.0805 (7)	0.7236 (4)	0.082 (4)
C6B	0.6672 (17)	0.1174 (7)	0.7094 (4)	0.089 (5)
C5B	0.7008 (14)	0.1371 (6)	0.6602 (4)	0.084 (5)

Table 2. Selected geometric parameters (Å, °)

01A-C3A	1.18(1)	O1 <i>B</i> —C3 <i>B</i>	1.23(1)
02A-C1A	1.20(1)	O2B-C1B	123(1)
O3A—N3A	1.24(1)	038-N38	1.18(1)
O4A - N3A	1.20(1)	O4B - N3B	1 19 (1)
N1A - N2A	1 25 (1)	N18-N28	1.12(1)
N1A - C1'A	1.25(1) 1.46(1)	N1B - C1'B	1.23(1)
N24_C24	1.40(1)		1.44 (1)
N34 - CA' A	1.47(1)	N2B = C2B	1.49(1)
CA'A C3'A	1.47(1)	N3D - C4 D	1.47 (1)
C4'A = C5'A	1.39(1)	C4B-C3B	1.39(1)
$C_4 A = C_3 A$	1.41(1)	C4 B - C3 B	1.37(1)
$C_{3}A - C_{2}A$	1.37(1)	$C_3 B - C_2 B$	1.37(1)
$C_2 A - C_1 A$	1.39(1)	$C2^{\prime}B - C1^{\prime}B$	1.40(1)
CI A - CO A	1.39(1)	$C1^{\prime}B-C6^{\prime}B$	1.40(1)
$C6^{\circ}A - C5^{\circ}A$	1.36(1)	C6' BC5' B	1.38 (1)
C10A - C2A	1.56(1)	C10B—C2B	1.52 (1)
C2A - C3A	1.53 (1)	C2B—C3B	1.52 (1)
C2A - C1A	1.54 (2)	C2B—C1B	1.51 (1)
C3A—C4A	1.48 (1)	C3B—C4B	1.51 (1)
C4A—C9A	1.40 (2)	C4B—C9B	1.38 (2)
C4A—C5A	1.40(1)	C4B—C5B	1.38 (2)
C9A-C1A	1.49 (1)	C9B—C1B	1.48 (1)
C9A—C8A	1.40 (2)	C9BC8B	1.41 (1)
C8A—C7A	1.38 (2)	C8B—C7B	1.39 (2)
C7A—C6A	1.39 (2)	C7BC6B	1.35 (2)
C6AC5A	1.37 (2)	C6BC5B	1.39 (2)
N2A - N1A - C1'A	112.6 (6)	N2B-N1B-C1'B	112.8 (6)
N1A-N2A-C2A	113.4 (6)	N1B-N2B-C2B	113.6 (6)
O3A—N3A—O4A	123.4 (9)	O3B—N3B—O4B	122.0 (9)
O4A-N3A-C4'A	119.6 (9)	O4B-N3B-C4'B	117.7 (8)
O3A-N3A-C4'A	117.0 (8)	O3B-N3B-C4'B	120.0 (9)
N3A - C4'A - C5'A	119.2 (8)	N3B-C4'B-C5'B	118.6 (7)
N3A - C4'A - C3'A	119.5 (7)	N3B-C4'B-C3'B	118.5 (8)
C3'A - C4'A - C5'A	121.3 (8)	C3'B-C4'B-C5'B	122.8 (8)
C4'A - C3'A - C2'A	118.4 (8)	C4'B-C3'B-C2'B	118.8 (7)
C3'A - C2'A - C1'A	120.1 (8)	C3'B-C2'B-C1'B	119.0 (7)
N1A - C1'A - C2'A	1151(7)	N1B-C1'B-C2'B	1239(7)
C2'A - C1'A - C6'A	1214(8)	$C^{2'}B = C^{1'}B = C^{6'}B$	121.2 (7)
NIA-CI'A-C6'A	123 5 (7)	N1B-C1'B-C6'B	114.7(7)
C1'A - C6'A - C5'A	1193(8)	C1'B-C6'B-C5'B	110 4 (8)
C4'A - C5'A - C6'A	119.4 (8)	C4'B = C5'B = C6'B	118 5 (8)
N24-C24-C104	119.4(0) 114.6(7)	N2R = C2R = C10R	116.5 (8)
C104 - C24 - C14	110.9(7)	C10R - C2R - C1R	112.0 (8)
$C_{104} - C_{24} - C_{34}$	110.5(7)	C10B - C2B - C1B	110.0 (8)
N2A = C2A = C1A	1057(7)	N2P C2P C1P	107.5 (7)
N2A = C2A = C1A	103.7 (7)	N2B = C2B = C1B	107.3(7)
$C_{2A} = C_{2A} = C_{3A}$	107.9(7)	N2B = C2B = C3B	100.0 (8)
$C_{3A} - C_{2A} - C_{1A}$	105.8 (7)	$C_{3B} - C_{2B} - C_{1B}$	102.8 (7)
$C_{1A} - C_{3A} - C_{2A}$	120.3 (8)	01B-C3B-C2B	128.0 (9)
$C_{2A} - C_{3A} - C_{4A}$	105.5 (7)	$C_{2B} - C_{3B} - C_{4B}$	108.7 (8)
OIA - C3A - C4A	127.9 (8)	018-038-048	123.3 (9)
$C_{3A} - C_{4A} - C_{5A}$	128.7 (9)	C3B-C4B-C5B	130.8 (9)
C3A-C4A-C9A	112.2 (7)	C3B-C4B-C9B	107.7 (9)
C9A - C4A - C5A	118.9 (9)	C9B—C4B—C5B	121.3 (8)
C4A-C9A-C8A	122.8 (8)	C4B—C9B—C8B	122.7 (8)
C4A - C9A - C1A	109.1 (9)	C4B—C9B—C1B	111.0 (8)
CIA-C9A-C8A	127.8 (9)	C1B—C9B—C8B	126.3 (9)
C_{2A} – C_{1A} – C_{9A}	106.5 (9)	C2BC1BC9B	108.4 (8)
02A-CIA-C9A	127.1 (10)	O2B—C1B—C9B	127.1 (8)
O2A - C1A - C2A	126.3 (9)	O2BC1BC2B	124.5 (8)
C9A—C8A—C7A	115.8 (9)	C9B—C8B—C7B	113.4 (9)

C8A—C7A—C6A	122.3 (11)	C8B—C7B—C6B	124.4 (10)
C7A—C6A—C5A	121.4 (11)	C7B—C6B—C5B	120.8 (11)
C4A—C5A—C6A	118.6 (10)	C4B—C5B—C6B	117.0 (10)

Empirical absorption corrections based on an ellipsoidal fit to ψ -scan data were applied (Kopfmann & Huber, 1968). The H atoms of the benzene rings were refined riding on the parent C atoms at a distance of 1.08 Å. Each Me group was refined as a rigid group. The H atoms had fixed isotropic temperature factors. Refinement was by blocked full-matrix least-squares methods. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); SIR88 (Burla et al., 1989). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983). Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, bond angles involving H atoms and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71644 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: NA10421

References

- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Acta Cryst. (1994). C50, 631-635

Butyl[3-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1-yl)propylldimethylammonium Bromide, $C_{16}H_{42}NO_2Si_3^+.Br^-$, at 173 and 301 K

RAINER RUDERT AND GERD SCHMAUCKS

Max-Planck-Institut für Kolloid- und Grenzflächenforschung Rudower Chaussee 5, 12484 Berlin, Germany

(Received 24 February 1993; accepted 23 July 1993)

Abstract

The molecules form double layers in head-head arrangements. The non-polar regions of the layers are held together by weak van der Waals interactions and the polar regions mainly by electrostatic interactions. One of the Si-O-Si bond angles is much

631